skip to main content


Search for: All records

Creators/Authors contains: "Qiu, Hongrui"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We discuss general structural features of the Banning and Mission Creek strands (BF and MCF) of the southern San Andreas fault (SSAF) in the Coachella Valley, based on ambient noise and earthquake wavefields recorded by a seismic array with >300 nodes. Earthquake P arrivals show rapid changes in waveform characteristics over 20–40 m zones that coincide with the surface BF and MCF. These variations indicate that the BF and MCF are high-impedance contrast interfaces—an observation supported by the presence of seismic reflections. Another prominent but more diffuse change in SSAF structure is found ∼1 km northeast of the BF. This feature has average-to-low arrival times (P and S) and ambient noise levels (at <30 Hz), and likely represents a relatively fast velocity block sandwiched between broader MCF and BF zones. The maximal arrival delays (P ∼0.1 s and S ∼0.25 s) and the highest ambient noise levels (>2 times median) are consistently observed southwest of the BF—a combined effect of Coachella Valley sediments and rock damage on that side. Immediately northeast of the MCF, large S minus P delays suggest a broad high VP/VS zone associated with asymmetric rock damage across the SSAF. This general overview shows the BF and MCF as mature but distinctly different fault zones. Future analyses will further clarify these and other SSAF features in greater detail. 
    more » « less
  2. Abstract

    We provide high‐resolution seismic imaging of the central Garlock fault using data recorded by two dense seismic arrays that cross the Ridgecrest rupture zone (B4) and the Garlock fault (A5). Analyses of fault zone head waves andP‐wave delay times at array A5 show that the Garlock fault is a sharp bimaterial interface withPwaves traveling ∼5% faster in the northern crustal block. The across‐fault velocity contrast agrees with regional tomography models and generates clearP‐wave reflections in waveforms recorded by array B4. Kirchhoff migration of the reflected waves indicates a near‐vertical fault between 2 and 6 km depth. TheP‐wave delay times imply a ∼300‐m‐wide transition zone near the Garlock fault surface trace beneath array A5, offset to the side with faster velocities. The results provide important constraints for derivations of earthquake properties, simulations of ruptures and ground motion, and future imaging studies associated with the Garlock fault.

     
    more » « less
  3. Abstract

    The Southern San Andreas Fault (SSAF) in California is one of the most thoroughly studied faults in the world, but its configuration at seismogenic depths remains enigmatic in the Coachella Valley. We use a combination of space geodetic and seismic observations to demonstrate that the relatively straight southernmost section of the SSAF, between Thousand Palms and Bombay Beach, is dipping to the northeast at 60–80° throughout the upper crust (<10 km), including the shallow aseismic layer. We constrain the fault attitude in the top 2–3 km using inversions of surface displacements associated with shallow creep, and seismic data from a dense nodal array crossing the fault trace near Thousand Palms. The data inversions show that the shallow dipping structure connects with clusters of seismicity at depth, indicating a continuous throughgoing fault surface. The dipping fault geometry has important implications for the long‐term fault slip rate, the intensity of ground shaking during future large earthquakes, and the effective strength of the southern SAF.

     
    more » « less
  4. Fly ash—the residuum of coal burning—contains a considerable amount of fossilized particulate organic carbon (FOC ash ) that remains after high-temperature combustion. Fly ash leaks into natural environments and participates in the contemporary carbon cycle, but its reactivity and flux remained poorly understood. We characterized FOC ash in the Chang Jiang (Yangtze River) basin, China, and quantified the riverine FOC ash fluxes. Using Raman spectral analysis, ramped pyrolysis oxidation, and chemical oxidation, we found that FOC ash is highly recalcitrant and unreactive, whereas shale-derived FOC (FOC rock ) was much more labile and easily oxidized. By combining mass balance calculations and other estimates of fly ash input to rivers, we estimated that the flux of FOC ash carried by the Chang Jiang was 0.21 to 0.42 Mt C⋅y −1 in 2007 to 2008—an amount equivalent to 37 to 72% of the total riverine FOC export. We attributed such high flux to the combination of increasing coal combustion that enhances FOC ash production and the massive construction of dams in the basin that reduces the flux of FOC rock eroded from upstream mountainous areas. Using global ash data, a first-order estimate suggests that FOC ash makes up to 16% of the present-day global riverine FOC flux to the oceans. This reflects a substantial impact of anthropogenic activities on the fluxes and burial of fossil organic carbon that has been made less reactive than the rocks from which it was derived. 
    more » « less
  5. Abstract

    We develop an automatic workflow for enhancing surface wave signals in ambient noise cross correlations (ANCs) calculated for a one‐dimensional (1‐D) linear array. The proposed array‐based method is applied to a 1.6 km‐long dense linear nodal array crossing surface traces of the San Jacinto fault near Anza, California. Fundamental and higher modes of surface waves are observed in ANCs of the nodal array. After attenuating the surface wave overtones by applying a frequency‐dependent tapering window to the ANCs, signals dominated by the fundamental mode surface wave are then enhanced through a denoising process based on three‐station interferometry of direct waves. The signal‐to‐noise ratio is significantly increased at high frequencies (>2 Hz) after denoising. Phase travel times are extracted reliably in the frequency domain for the period ranges of 0.3–1.2 s and 0.3–1.6 s for Rayleigh and Love waves, respectively. The corresponding period‐dependent phase velocity profiles derived from the eikonal equation reveal high‐resolution details of fault zone internal structures beneath the array. A broad (500–1,000 m) low‐velocity zone that narrows with increasing period is observed, illuminating a flower‐shaped structure of the San Jacinto fault damage zone.

     
    more » « less
  6. Abstract

    We analyze seismograms recorded by four arrays (B1–B4) with 100 m station spacing and apertures of 4–8 km that cross the surface rupture of the 2019 Mw 7.1 Ridgecrest earthquake. The arrays extend from B1 in the northwest to B4 in the southeast of the surface rupture. Delay times betweenPwave arrivals associated with ∼1,200 local earthquakes and four teleseismic events are used to estimate local velocity variations beneath the arrays. Both teleseismic and localPwaves travel faster on the northeast than the southwest side of the fault beneath arrays B1 and B4, but the velocity contrast is less reliably resolved at arrays B2 and B3. We identify several 1–2 km wide low‐velocity zones with much slower inner cores that amplifySwaveforms, inferred as damage zones, beneath each array. The damage zones at arrays B2 and B4 also generate fault‐zone head and trapped waves. An automated detector, based on peak ground velocities and durations of high‐amplitude waves, identifies candidate fault‐zone trapped waves (FZTWs) in a localized zone for ∼600 earthquakes at array B4. Synthetic waveform modeling of averaged FZTWs, generated by ∼30 events with high‐quality signals, indicates that the trapping structure at array B4 has a width of ∼300 m, depth of 3–5 km,Swave velocity reduction of ∼20% with respect to the surrounding rock,Q‐value of ∼30, andSwave velocity contrast of ∼4% across the fault (faster on the northeast side). The results show complex fault‐zone internal structures (velocity contrasts and low‐velocity zones) that vary along fault strike.

     
    more » « less
  7. SUMMARY

    We study temporal changes of seismic velocities associated with the 10 June 2016 Mw 5.2 Borrego Springs earthquake in the San Jacinto fault zone, using nine component Green's function estimates reconstructed from daily cross correlations of ambient noise. The analysed data are recorded by stations in two dense linear arrays, at Dry Wash (DW) and Jackass Flat (JF), crossing the fault surface trace ∼3 km northwest and southeast of the event epicentre. The two arrays have 9 and 12 stations each with instrument spacing of 25–100 m. Relative velocity changes (δv/v) are estimated from arrival time changes in the daily correlation coda waveforms compared to a reference stack. The obtained array-average δv/v time-series exhibit changes associated with the Borrego Springs event, superposed with seasonal variations. The earthquake-related changes are characterized by a rapid coseismic velocity drop followed by a gradual recovery. This is consistently observed at both arrays using time- and frequency-domain δv/v analyses with data from different components in various frequency bands. Larger changes at lower frequencies imply that the variations are not limited to the near surface material. A decreasing coseismic velocity reduction with coda wave lapse time indicates larger coseismic structural perturbations in the fault zone and near-fault environment compared to the surrounding rock. Observed larger changes at the DW array compared to the JF array possibly reflect the northwestward rupture directivity of the Borrego Springs earthquake.

     
    more » « less
  8. Abstract

    Near‐surface seismic velocity structure plays a critical role in ground motion amplification during large earthquakes. In particular, the local Vp/Vs ratio strongly influences the amplitude of Rayleigh waves. Previous studies have separately imaged 3D seismic velocity and Vp/Vs ratio at seismogenic depth, but lack regional coverage and/or fail to constrain the shallowest structure. Here, we combine three datasets with complementary sensitivity in a Bayesian joint inversion for shallow crustal shear velocity and near‐surface Vp/Vs ratio across Southern California. Receiver functions–including with an apparent delayed initial peak in sedimentary basins, and long considered a nuisance in receiver function imaging studies–highly correlate with short‐period Rayleigh wave ellipticity measurements and require the inclusion of a Vp/Vs parameter. The updated model includes near‐surface low shear velocity more in line with geotechnical layer estimates, and generally lower than expected Vp/Vs outside the basins suggesting widespread shallow fracturing and/or groundwater undersaturation.

     
    more » « less
  9. Abstract

    We present observations and modeling of spatial eigen‐functions of resonating waves within fault zone waveguide, using data recorded on a dense seismic array across the San Jacinto Fault Zone (SJFZ) in southern California. The array consists of 5‐Hz geophones that cross the SJFZ with ~10–30 m spacing at the Blackburn Saddle near the Hemet Stepover. Wavefield snapshots after theSwave arrival are consistent for more than 50 near‐fault events, suggesting that this pattern is controlled by the fault zone structure rather than source properties. Data from example event with high signal to noise ratio show three main frequency peaks at ~1.3, ~2.0, and ~2.8 Hz in the amplitude spectra of resonance waves averaged over stations near the fault. The data are modeled with analytical expressions for eigen‐functions of resonance waves in a low‐velocity layer (fault zone) between two quarter‐spaces. Using a grid search‐based method, we investigate the possible width of the waveguide, location within the array, and shear wave velocities of the media that fit well the resonance signal at ~1.3 Hz. The results indicate a ~300 m wide damaged fault zone layer with ~65%Swave velocity reduction compared to the host rock. The SW edge of the low‐velocity zone is near the mapped fault surface trace, indicating that the damage zone is asymmetrically located at the regionally faster NE crustal block. The imaging resolution of the fault zone structure can be improved by modeling fault zone resonance modes and trapped waves together.

     
    more » « less